This course is targeted at Geoscience/Engineer trainees who may wish to have a general appraisal of our downhole tool systems, borehole seismic theory, and well deployment.

- **Difficulty:** Intermediate
- **Duration:** 3 days
- **Group Size:** Max 6 persons (Recommended 3-4).
- **Accommodation:** Discounted accommodation at Somerton staff house for up to 6 persons (subject to availability).
- **Prerequisites:** We would encourage groups to be of similar experience to allow best differentiation of learning. Trainee
 - The main prerequisite is a willingness to embrace both the classroom and practical theory. Knowledge of basic wave physics is assumed.
 - The courses are delivered in English. However we can assist with arranging translation services if required.
 - Trainees are required bring a laptop PC for classroom theory.
 - Health and Safety - All course tasks are risk assessed and take place in a safe environment. All PPE items are provided, although we advise trainees to bring their own protective footwear to ensure maximum comfort.

Module Topics

- Introduction to Borehole Seismic Acquisition
- ACQ Acquisition Software - Configuring a survey
- ACQ Acquisition Software (Cont’d) - Simulating various VSP’s
- Practical – Well Operations, Shooting a real impulsive source ZVSP either in Somerton Test Well or a more complex VSP at ASL Borehole Test Facility* (Vibroseis also available here).
- Simple VSP Processing Fundamentals using VSProwess Software

Module Overview

Day 1 AM
M. 0
Introduction to Borehole Seismic Acquisition

Day 1 PM
M. 6
ACQ Acquisition Software - Configuring a survey

Day 2 AM
M. 6
ACQ Acquisition Software (Cont’d) - Simulating various VSP’s

Day 2 PM
DAY 3 AM
M. 7
Practical – Well Operations, Shooting a real impulsive source ZVSP either in Somerton Test Well or a more complex VSP at ASL Borehole Test Facility* (Vibroseis also available here).

DAY 3 PM
M. 8
M. 8 Simple VSP Processing Fundamentals using VSProwess Software

Comments

*Subject to availability of ASL Borehole test facility (Allow extra 0.5 Day for travel to test site). Onsite Test well at HQ can always be used for a simple ZVSP using local airgun.

ATC 4 Borehole Seismic Acquisition for Geoscientists

LEADERS IN BOREHOLE SEISMIC TECHNOLOGY

sales@avalonsciences.com www.avalonsciences.com/technical-support/avalon-training-courses-atc/
M1 – Introduction to Borehole Seismic Acquisition

Module Overview

This short module is designed to give trainees a basic understanding of borehole seismic theory and nomenclature which then will equip them for the practical tasks in which they will either rerecord or process a simple VSP survey. This is useful for both staff new to Geophysics and those whom require a refresher.

Difficulty: Foundation

No Prior Experience of using ASL Products Required

M1.1 Overview of Fundamental concepts of Petroleum Geology and Seismic Exploration.

Learning Objective: Trainees will have an introductory understanding of Petroleum Geology and the imaging of its associated structure using surface seismic geophysical methods. Topics:

- Basic Petroleum Geology – Defining an Oil and Gas Trap
- Wave Propagation and Reflection at an Interface
- Wavelet Theory Fundamentals and Seismic Resolution
- Overview of Surface Seismic Acquisition Methodology
- Basics of Move Out and Migration (ATC 4 only)
- Wavelet Inversion

M1.2 Key Concepts of Borehole Seismic Surveying and Monitoring

Learning Objective: Trainees will gain an understanding of the key concepts and applications of both VSP and microseismic monitoring.

Topics:

- What are VSPs and their Applications?
 - What is a VSP?
 - What are the advantages of a VSP?
 - Signal vs Noise
 - Check Shots
 - VSP Geometries (Zero Offset to 4D)
- Hydraulic Fracturing – Induced Seismicity and Monitoring.
 - Why Frack?
 - Borehole Seismic Monitoring
 - Regulation Case Studies
 - Other Microseismic Applications

M1.3 Examples of Downhole Seismic Hardware

Learning Objective: Opportunity to look at various borehole seismic tools.

Topics:

- Acquisition System Overview – Using ‘Geochain’ as example
 - Analogue vs Digital Operation
 - Geophone/Sensor Pack Variants – Omni Fixed vs Gimbal
 - Coupling and Vector Fidelity
- Ancillaries and Logging Tools
 - Gamma Logging Tools
 - Tension Heads and Wireline Properties
- Overview of how to QC a Tool System prior to Seismic Survey.
 - Demonstration of a surface set up with interface to recorder
 - Tap and Telemetry QC Tests.

Relevant ATC Courses

ATC 3
ATC 4
ATC 7

sales@avalonsciences.com www.avalonsciences.com/technical-support/avalon-training-courses-atc/
Module Overview

This module is aimed at Geoscientists and Engineers who wish to gain an understanding of ACQ acquisition software. They will be able to configure a tool system and perform diagnostics checks (ATC 1 + 2 Only). The trainees may wish to go beyond this and learn how to use ACQ to set up a VSP survey, configuring receivers and well site geometry. Trainees will be able to simulate a ZVSP acquisition exercise using ACQ (ATC 2-4).

Difficulty: Foundation-Intermediate

M6.1 Introduction to ACQ

Learning Objective: Trainees will be introduced to the software and will be able to use ACQ to configure a seismic survey job.

Topics:
• Software Installation
 • Install ACQ
 • Default folder used by ACQ
• Job Manager
 • Creating a new job in ACQ
 • Selecting recorder and downhole tool type
 • Specifying a non-default Rcd folder
• Entering general survey information
• Configuration of source, surface channel and downhole tools
 • Configuration parameters for airgun sources
 • Configuration parameters for explosion sources
 • Setting up GSP control
 • Setting auto pick parameters
 • Setting up automatic source location acquisition from a navigation system
 • Configuring surface channels
 • Configuring downhole tools

M6.2 Internal System Test

Learning Objective: Trainees will be able to perform an instrument test and diagnostics in the ACQ software.

Topics:
• Instrument Test and System Diagnostics
• Spectral Analysis
• Using the Journal

M6.3 Acquiring Data

Learning Objective: Trainees will know how to acquire data within the ACQ software, and will be able to do a basic interpretation of the data.

Topics:
• Monitor mode and Tool Control
• Recording, Stacking, and Displaying Data
• Plot Mode
• Profile Mode

M6.4 Simulate ZVSP

Learning Objective: Trainees will be able to simulate a ZVSP, and interpret the VSP plot components.

Topics:
• Configuring the Survey Simulator
 • Types of survey which can be simulated
 • Configuring Elevations and Depths
 • Choosing the downhole tool type
 • Configuring source
 • Configuring downhole tools
• Recording Simulation Data
 • How data is simulated
 • Recording data
 • Simulating telemetry errors
 • Features of VSP dataset

M6.5 Advanced ACQ

Learning Objective: Trainees will be able to use the advanced features within ACQ (for complex VSP surveys), and the supplementary MIRFCOPY and WELLTRAK software.

Topics:
• Logs
• Vibroseis
 • Configuration for Vibroseis sources
 • Moving versus static sources
 • Walkaway sources
• Complex Geometries
 • Simulate Spiral 3D Survey
• MIRF Copy
 • Configuring MIRFCOPY
 • Using MIRFCOPY with DVD-RAM
 • Using MIRFCOPY with ACQ simulator
• WELLTRAK
 • Configuring WELLTRAK
 • Importing deviation data into WELLTRAK
 • Editing WELLTRAK data
 • Interaction between ACQ and the WELLTRAK database

sales@avalonsciences.com www.avalonsciences.com/technical-support/avalon-training-courses-atc/
M7 Well Operations

Module Overview

This module is aimed at Field Engineers and Geoscientists who wish to acquire introductory practical experience deploying ASL borehole seismic equipment within a well. Trainees will acquire a simple shallow well rig source VSP and learn safe deployment/rig out procedures.

Difficulty: Intermediate

M7.1 Configuration of Geochain /Geochain Slim

Learning Objective: Trainees will be able to configure the Geochain and Geochain Slim on the surface, and prepare the tools for downhole operation.

Topics:
- Connection for Workshop Testing
 - Correct orientation of TAS and ASR/GSR
 - Use of link cables
 - Use of the wireline simulator
- Connecting a System to a Wireline
 - Wireline requirement
 - Wireline testing
 - Correct installation of GSP and GPP

M7.2 Configuration of Sources

Learning Objective: Trainees will be able to configure the sources using the GSP and RSS-2 surface panels (optional).

Topics:
- Interfacing to Sources and Source Controllers
 - Single airgun operation
 - GSPIO card capabilities and functionality
 - Interfacing to vibrator controllers
 - Interfacing to explosive blaster
 - Interfacing to multiple airgun controllers
- Configuration of Remote Multiple Sources Using RSS-2 (optional module)
 - Modes of operation
 - GSP synchronisation
 - RSS-2 (Master/Slave)
 - Analogue hydrophone adaptor (AHA)
 - Source interface unit

M7.3 Acquiring a Real ZVSP at Avalon Test Well

Learning Objective: Trainees will carry out practical exercise were they assemble the receivers and surface panels, and carry out a ZVSP survey of the Avalon Testing Well.

Topics:
- Surface Set Up
 - Assembly of receivers on surface
 - Connect to ITCs and Winch Unit wireline
 - Surface panel set up and interface
 - Interface of land spot Sleeve Gun to GSP (either local or using RSS-2)
- Downhole Acquisition
 - System diagnostics using ACQ software
 - Lower tools and acquire common depth stack ZVSP from TD surface
 - Safe rig out procedures
 - Perform routine maintenance checks and service

There may be opportunity to deliver this module at the new Avalon Borehole Test Facility based at Avalon Cornwall. This would allow a more complex deeper well survey to take place along with facilitating the use of offset vibroseis sources. This would add +0.5 days to the course time to allow for travel plus 1 nights accommodation at a hotel close to test site. Please let us know if you would like this module delivered at this facility.

sales@avalonsciences.com www.avalonsciences.com/technical-support/avalon-training-courses-atc/
This module is aimed at Engineers and Geoscientists who wish to have a foundation appraisal of VSP dataset characteristics and basic processing steps, and have a comprehensive understanding of how to use VSProwess to QC, pre-process and present VSP data.

- **Difficulty:** Intermediate

M8.1 Introducing/Refreshing Basic VSP Processing Theory

Learning Objective: Refresher - Trainees will have an introductory understanding of borehole seismic applications and will be able to identify the key features and processing steps of a VSP dataset.

Topics:
- Introduction to check shot surveys and VSP
- Application of borehole seismic surveys
- Understanding elevations and times
- VSP processing route theory
- Identification of VSP events
- Primary waves
- Multiples
- Other VSP events/Noise
- Preparation of data – General Overview
- Separation of upgoing and downgoing wavefields
- Collapsing multiple energy
- Overview of Corridor Stack and simple inversion steps for final composite display.

M8.2 VSProwess – A Rig Side Data QC Tool

Learning Objective: Trainees will be able to use industry standard VSProwess to import, configure, manipulate and display VSP plots to aid rig source QC and provide efficient data presentation.

Topics:
- Introduction to Data Processing using VSProwess
- Software installation
- Creating and editing processing routes
- Standard routes vs custom routes
- Display results
- Exploring display options
- Display zoom
- Acquisition repair
 - Selecting and Sorting Traces
 - Time Corrections
 - Error Corrections
- Simple QC – tools
 - Spectral Analysis
 - Hodogram tools
 - Frequency domain data (FX and FK) & Filtering

M8.4 Further Data Processing - an example

Learning Objective: Trainees will have fully processed a simple vertical incidence VSP example dataset demonstrating a detailed understanding of the operators and parameters involved within the pre-processing steps.

Topics:
- Preparation of SEG-Y data (client example?)
- Recover, Select and sort data
- Apply Filters
- Frist Arrival Picking/Stacking
- Introduction to Velocity Analysis
- Recover amplitude attenuation by spherical divergence
- Separation of upgoing and downgoing wavefields
- Blank operators
- Remove upwave multiples
- Deconvolve operator
- Presentation of data
- Minimum phase VSP
- Inversion and prediction ahead of the bit
- Enhancement of data
- Well View Displays
- Composite Displays

This is a condensed short course module introducing fundamental concepts of simple VSP processing. For advanced data QC and Pre-processing we recommend ATC-8 "Advanced In-field QC and Analysis of Borehole Seismic Data".

For instruction on advanced processing of 3D VSP datasets please contact VSProwess Ltd.